CakeDC Blog

TIPS, INSIGHTS AND THE LATEST FROM THE EXPERTS BEHIND CAKEPHP

Debug & Run Gitlab Pipelines In Your Local Environment

Some time ago, we established https://git.cakedc.com/ as our company workflow. Along with it we created automated tools to support a continuous integration environment, with automated deployments based on develop, qa, stage, master branches and some useful tools to run on specific branches. We used jenkins for a long time, then switched to gitlab around version 6 (more than 5 years ago!) and we've been using it since.

Gitlab provides a very powerful way to configure your pipelines and define specific docker images to be used as your runners. So we defined our own runner image and configured it to provide the typical dependencies needed to run static analysis tools, unit tests and other utilities as part of our build process. For example, one typical build file for a simple CakePHP project could be:

# https://hub.docker.com/r/jorgegonzalezcakedc/cakephp-runner

image: jorgegonzalezcakedc/cakephp-runner:yarn

 

before_script:

  # install ssh-agent

  - 'which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )'

 

  # run ssh-agent

  - eval $(ssh-agent -s)

 

  # add ssh key stored in SSH_PRIVATE_KEY variable to the agent store

  - ssh-add <(echo "$SSH_CI_PRIVATE_KEY")

  - echo "$SSH_CI_PRIVATE_KEY" > /root/.ssh/id_rsa

  - chmod 600 /root/.ssh/id_rsa

 

  # replace git oauth key for composer

  - sed -i "s/__TOKEN__/$GIT_OAUTH_TOKEN/g" ~/.composer/auth.json

 

variables:

  # Configure mysql service (https://hub.docker.com/_/mysql/)

  MYSQL_DATABASE: app_test

  MYSQL_ROOT_PASSWORD: root

 

stages:

  - test

  - deploy

 

test:mysql:

  services:

  - mysql:5.7.22

  script:

  - echo $MYSQL_PORT_3306_TCP_ADDR

  - composer install --verbose --prefer-dist --optimize-autoloader --no-progress --no-interaction

  - ( [ -f vendor/bin/phpunit ] && echo "phpunit already installed";) || composer require phpunit/phpunit

  - mysql -uroot -p$MYSQL_ROOT_PASSWORD -h $MYSQL_PORT_3306_TCP_ADDR -e 'CREATE DATABASE test_myapp_template;';

  - DATABASE_TEST_TEMPLATE_URL="mysql://root:$MYSQL_ROOT_PASSWORD@$MYSQL_PORT_3306_TCP_ADDR/test_myapp_template" bin/cake db_test -i

  - DATABASE_TEST_URL="mysql://root:$MYSQL_ROOT_PASSWORD@$MYSQL_PORT_3306_TCP_ADDR/app_test" DATABASE_TEST_TEMPLATE_URL="mysql://root:$MYSQL_ROOT_PASSWORD@$MYSQL_PORT_3306_TCP_ADDR/test_myapp_template" QUEUE_DEFAULT_URL='null:///?queue=default&timeout=1' vendor/bin/phpunit --verbose --colors=never

  except:

  - tags

 

deploy_develop:

  stage: deploy

  environment:

    name: develop

    url: https://www.cakedc.com

  script:

    - cd deploy && php deployer.phar deploy develop -vvv

  only:

    - develop

  except:

    - tags

 

In this case, on every push to the "develop" branch, we'll run unit tests of the project, then call the specific deploy script to push the project to our CI environment.

This process is usually smooth and clean,  if it's not,  then you need to debug why the runner is failing at some step.

 

One possible answer to this situation would be to dockerize the project and ensure the local docker version matches 100% the runner being used, so you don't have surprises while running your pipelines.  This process is actually done in some projects to ensure we match specific versions and dependencies. But for legacy projects, it's useful to have something more or less generic that just works™ and does not require the effort to dockerize. In this case, and going back to the topic of the article, how can we debug the issues locally without waiting for the pipelines to run? (Note I'm using Ubuntu 16.04 as my dev environment, and possibly aiming to switch to 20.04 LTS soon…)

  • Install docker in your local machine see https://docs.docker.com/get-docker/ 

  • Ensure docker is up and running sudo service docker start

  • Install the gitlab apt repositories curl -L https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.deb.sh | sudo bash

  • Install the gitlab-runner package sudo apt update && sudo apt install -y gitlab-runner

  • Go to your local project, where the .gitlab-ci.yml file is located

  • Run your pipeline locally, note you can pass environment variables via --env and you can name the target you want to build, in this case test:mysql gitlab-runner exec docker test:mysql --env SSH_CI_PRIVATE_KEY="`cat ~/.ssh/id_rsa`" --env GIT_OAUTH_TOKEN="XXX"

  • If there's a problem with the pipeline, add a long sleep time in your .gitlab-ci.yml file to keep the pipeline up and running while you connect to it, for example after the like to run your unit tests, add a new line sleep 1337

  • Run your pipeline again, you'll notice it won't stop…

  • Open a new terminal and check the id of the docker instance using docker ps

  • You'll see a list of the active docker container IDs

  • Finally connect to the container using docker exec -it CONTAINER_ID bash

  • If bash is not available in the container, you'll need another way to connect to it (or another container)

 

Once you get access to the container, you can manually execute commands, check permissions, run shells, and debug db and code contents to hunt down the bug you should have already in a unit test…

This method saved me some time trying to understand a specific issue in a pipeline, I hope it'll save some of your time too!

 

Latest articles

The new CakePHP RateLimitMiddleware

This article is part of the CakeDC Advent Calendar 2025 (December 21st 2025) Rate limiting a specific endpoint of your application can be a life saver. Sometimes you can't optimize the endpoint and it'll be expensive in time or CPU, or the endpoint has a business restriction for a given user. In the past, I've been using https://github.com/UseMuffin/Throttle a number of times to provide rate limiting features to CakePHP. Recently, I've been watching the addition of the RateLimitMiddleware to CakePHP 5.3, I think it was a great idea to incorporate these features into the core and I'll bring you a quick example about how to use it in your projects. Let's imagine you have a CakePHP application with an export feature that will take some extra CPU to produce an output, you want to ensure the endpoint is not abused by your users. In order to limit the access to the endpoint, add the following configuration to your config/app.php // define a cache configuration, Redis could be a good option for a fast and distributed approach 'rate_limit' => [ 'className' => \Cake\Cache\Engine\RedisEngine::class, 'path' => CACHE, 'url' => env('CACHE_RATE_LIMIT_URL', null), ], Then, in your src/Application.php middleware method, create one or many configurations for your rate limits. The middleware allows a lot of customization, for example to select the strategy, or how are you going to identify the owner of the rate limit. ->add(new RateLimitMiddleware([ 'strategy' => RateLimitMiddleware::STRATEGY_FIXED_WINDOW, 'identifier' => RateLimitMiddleware::IDENTIFIER_IP, 'limit' => 5, 'window' => 10, 'cache' => 'rate_limit', 'skipCheck' => function ($request) { return !( $request->getParam('controller') === 'Reports' && $request->getParam('action') === 'index' ); } ])) In this particular configuration we are going to limit the access to the /reports/index endpoint (we skip everything else) to 5 requests every 10 seconds. You can learn more about the middleware configuration here https://github.com/cakephp/docs/pull/8063 while the final documentation is being finished. This article is part of the CakeDC Advent Calendar 2025 (December 21st 2025)

Real-Time Notifications? You Might Not Need WebSockets

This article is part of the CakeDC Advent Calendar 2025 (December 20th 2025) As PHP developers, when we hear "real-time," our minds immediately jump to WebSockets. We think of complex setups with Ratchet, long-running server processes, and tricky Nginx proxy configurations. And for many applications (like live chats or collaborative editing) WebSockets are absolutely the right tool. But, if you don't need all that complexity or if you just want to push data from your server to the client? Think of a new notification, a "users online" counter, or a live dashboard update. For these one-way-street use cases, WebSockets are often overkill. Enter Server-Sent Events (SSE). It's a simple, elegant, and surprisingly powerful W3C standard that lets your server stream updates to a client over a single, long-lasting HTTP connection.

SSE vs. WebSockets: The Showdown

The most important difference is direction.
  • WebSockets (WS): Bidirectional. The client and server can both send messages to each other at any time. It's a two-way conversation.
  • Server-Sent Events (SSE): Unidirectional. Only the server can send messages to the client. It's a one-way broadcast.
This single difference has massive implications for simplicity and implementation.
Feature Server-Sent Events (SSE) WebSockets (WS)
Direction Unidirectional (Server ➔ Client) Bidirectional (Client ⟺ Server)
Protocol Just plain HTTP/S A new protocol (ws://, wss://)
Simplicity High. simple API, complex ops at scale Low. Requires a special server.
Reconnection Automatic! The browser handles it. Manual. You must write JS to reconnect.
Browser API Native EventSource object. Native WebSocket object.
Best For Notifications, dashboards, live feeds. Live chats, multiplayer games, co-editing.
Pros for SSE:
  • It's just HTTP. No new protocol, no special ports.
  • Automatic reconnection is a life-saver.
  • The server-side implementation can be a simple controller action.
Cons for SSE:
  • Strictly one-way. The client can't send data back on the same connection.
  • Some older proxies or servers might buffer the response, which can be tricky.
Infrastructure Note: Since SSE keeps a persistent connection open, each active client will occupy one PHP-FPM worker. For high-traffic applications, ensure your server is configured to handle the concurrent load or consider a non-blocking server like RoadRunner. Additionally, using HTTP/2 is strongly recommended to bypass the 6-connection-per-domain limit found in older HTTP/1.1 protocols

The Implementation: A Smart, Reusable SSE System in CakePHP

We're not going to build a naive while(true) loop that hammers our database every 2 seconds. That's inefficient. Instead, we'll build an event-driven system. The while(true) loop will only check a cache key. This is lightning-fast. A separate "trigger" class will update that cache key's timestamp only when a new notification is actually created. This design is clean, decoupled, and highly performant.
Note: This example uses CakePHP, but the principles (a component, a trigger, and a controller) can be adapted to any framework like Laravel or Symfony.

1. The Explicit SseTrigger Class

First, we need a clean, obvious way to "poke" our SSE stream. We'll create a simple class whose only job is to update a cache timestamp. This is far better than a "magic" Cache::write() call hidden in a model. src/Sse/SseTrigger.php <?php namespace App\Sse; use Cake\Cache\Cache; /** * Provides an explicit, static method to "push" an SSE event. * This simply updates a cache key's timestamp, which the * SseComponent is watching. */ class SseTrigger { /** * Pushes an update for a given SSE cache key. * * @param string $cacheKey The key to "touch". * @return bool */ public static function push(string $cacheKey): bool { // We just write the current time. The content doesn't // matter, only the timestamp. return Cache::write($cacheKey, microtime(true)); } }

CRITICAL PERFORMANCE WARNING: The PHP-FPM Bottleneck

In a standard PHP-FPM environment, each SSE connection is synchronous and blocking. This means one active SSE stream = one locked PHP-FPM worker. If your max_children setting is 50, and 50 users open your dashboard, your entire website will stop responding because there are no workers left to handle regular requests. How to mitigate this: Dedicated Pool: Set up a separate PHP-FPM pool specifically for SSE requests. Go Asynchronous: Use a non-blocking server like RoadRunner, Swoole or FrankenPHP. These can handle thousands of concurrent SSE connections with minimal memory footprint. HTTP/2: Always serve SSE over HTTP/2 to bypass the browser's 6-connection limit per domain.

2. The SseComponent (The Engine)

This component encapsulates all the SSE logic. It handles the loop, the cache-checking, the CallbackStream, and even building the final Response object. The controller will be left perfectly clean. To handle the stream, we utilize CakePHP's CallbackStream. Unlike a standard response that sends all data at once, CallbackStream allows us to emit data in chunks over time. It wraps our while(true) loop into a PSR-7 compliant stream, enabling the server to push updates to the browser as they happen without terminating the request. src/Controller/Component/SseComponent.php <?php namespace App\Controller\Component; use Cake\Controller\Component; use Cake\Http\CallbackStream; use Cake\Cache\Cache; use Cake\Http\Response; class SseComponent extends Component { protected $_defaultConfig = [ 'poll' => 2, // How often to check the cache (in seconds) 'eventName' => 'message', // Default SSE event name 'heartbeat' => 30, // Keep-alive to prevent proxy timeouts ]; /** * Main public method. * Builds the stream and returns a fully configured Response. */ public function stream(callable $dataCallback, string $watchCacheKey, array $options = []): Response { $stream = $this->_buildStream($dataCallback, $watchCacheKey, $options); // Get and configure the controller's response $response = $this->getController()->getResponse(); $response = $response ->withHeader('Content-Type', 'text/event-stream') ->withHeader('Cache-Control', 'no-cache') ->withHeader('Connection', 'keep-alive') ->withHeader('X-Accel-Buffering', 'no') // For Nginx: disable response buffering ->withBody($stream); return $response; } /** * Protected method to build the actual CallbackStream. */ protected function _buildStream(callable $dataCallback, string $watchCacheKey, array $options = []): CallbackStream { $config = $this->getConfig() + $options; return new CallbackStream(function () use ($dataCallback, $watchCacheKey, $config) { set_time_limit(0); $lastSentTimestamp = null; $lastHeartbeat = time(); while (true) { if (connection_aborted()) { break; } // 1. THE FAST CHECK: Read the cache. $currentTimestamp = Cache::read($watchCacheKey); // 2. THE COMPARE: Has it been updated? if ($currentTimestamp > $lastSentTimestamp) { // 3. THE SLOW CHECK: Cache is new, so run the data callback. $data = $dataCallback(); // 4. THE PUSH: Send the data. echo "event: " . $config['eventName'] . "\n"; echo "data: " . json_encode($data) . "\n\n"; $lastSentTimestamp = $currentTimestamp; $lastHeartbeat = time(); } else if (time() - $lastHeartbeat > $config['heartbeat']) { // 5. THE HEARTBEAT: Send a comment to keep connection alive. echo ": \n\n"; $lastHeartbeat = time(); } if (ob_get_level() > 0) { ob_flush(); } flush(); // Wait before the next check sleep($config['poll']); } }); } }

3. Connecting the Logic (Model & Controller)

First, we use our SseTrigger in the afterSave hook of our NotificationsTable. This makes it clear: "After saving a notification, push an update." src/Model/Table/NotificationsTable.php (Partial) use App\Sse\SseTrigger; // Don't forget to import! public function afterSave(EventInterface $event, Entity $entity, ArrayObject $options) { // Check if the entity has a user_id if ($entity->has('user_id') && !empty($entity->user_id)) { // Build the user-specific cache key $userCacheKey = 'notifications_timestamp_user_' . $entity->user_id; // Explicitly trigger the push! SseTrigger::push($userCacheKey); } } Now, our controller action becomes incredibly simple. Its only jobs are to get the current user, define the data callback, and return the component's stream. src/Controller/NotificationsController.php <?php namespace App\Controller; use App\Controller\AppController; use Cake\Http\Exception\ForbiddenException; class NotificationsController extends AppController { public function initialize(): void { parent::initialize(); $this->loadComponent('Sse'); $this->loadComponent('Authentication.Authentication'); } public function stream() { $this->autoRender = false; // 1. Get authenticated user $identity = $this->Authentication->getIdentity(); if (!$identity) { throw new ForbiddenException('Authentication required'); } // 2. Define user-specific parameters $userId = $identity->get('id'); $userCacheKey = 'notifications_timestamp_user_' . $userId; // 3. Define the data callback (what to run when there's an update) $dataCallback = function () use ($userId) { return $this->Notifications->find() ->where(['user_id' => $userId, 'read' => false]) ->order(['created' => 'DESC']) ->limit(5) ->all(); }; // 4. Return the stream. That's it! return $this->Sse->stream( $dataCallback, $userCacheKey, [ 'eventName' => 'new_notification', // Custom event name for JS 'poll' => 2 ] ); } }

4. The Frontend (The Easy Part)

Thanks to the native EventSource API, the client-side JavaScript is trivial. No libraries. No complex connection management. <script> // 1. Point to your controller action const sseUrl = '/notifications/stream'; const eventSource = new EventSource(sseUrl); // 2. Listen for your custom event eventSource.addEventListener('new_notification', (event) => { console.log('New data received!'); const notifications = JSON.parse(event.data); // Do something with the data... // e.g., update a <ul> list or a notification counter updateNotificationBell(notifications); }); // 3. (Optional) Handle errors eventSource.onerror = (error) => { console.error('EventSource failed:', error); // The browser will automatically try to reconnect. }; // (Optional) Handle the initial connection eventSource.onopen = () => { console.log('SSE connection established.'); }; </script>

Ideas for Your Projects

You can use this exact pattern for so much more than just notifications:
  • Live Admin Dashboard: A "Recent Sales" feed or a "Users Online" list that updates automatically.
  • Activity Feeds: Show "John recently commented..." in real-time.
  • Progress Indicators: For a long-running background process (like video encoding), push status updates ("20% complete", "50% complete", etc.).
  • Live Sports Scores: Push new scores as they happen.
  • Stock or Crypto Tickers: Stream new price data from your server.

When NOT to Use SSE: Know Your Limits

While SSE is an elegant solution for many problems, it isn't a silver bullet. You should avoid SSE and stick with WebSockets or standard Polling when:
  • True Bidirectional Communication is Required: If your app involves heavy "back-and-forth" (like a fast-paced multiplayer game or a collaborative whiteboarding tool), WebSockets are the correct choice.
  • Binary Data Streams: SSE is a text-based protocol. If you need to stream raw binary data (like audio or video frames), WebSockets or WebRTC are better suited.
  • Legacy Browser Support (IE11): If you must support older browsers that lack EventSource and you don't want to rely on polyfills, SSE will not work.
  • Strict Connection Limits: If you are on a restricted shared hosting environment with very few PHP-FPM workers and no support for HTTP/2, the persistent nature of SSE will quickly exhaust your server's resources.

Conclusion

WebSockets are a powerful tool, but they aren't the only tool. For the wide array of use cases that only require one-way, server-to-client communication, Server-Sent Events are a simpler, more robust, and more maintainable solution. It integrates perfectly with the standard PHP request cycle, requires no extra daemons, and is handled natively by the browser. So the next time you need real-time updates, ask yourself: "Do I really need a two-way conversation?" If the answer is no, give SSE a try. This article is part of the CakeDC Advent Calendar 2025 (December 20th 2025)

QA vs. Devs: a MEME tale of the IT environment

QA testing requires knowledge in computer science but still many devs think of us like  homer-simpson-meme   BUT... morpheus-meme   It is not like we want to detroy what you have created but... house-on-fire-meme   And we have to report it, it is our job... tom-and-jerry-meme   It is not like we think dev-vs-qa   I mean cat-meme   Plaeas do not consider us a thread :) willy-wonka-meme 0/0/0000 reaction-to-a-bug   Sometimes we are kind of lost seeing the application... futurama-meme   And sometimes your don't believe the crazy results we get... ironman-meme   I know you think aliens-meme   But remmember we are here to help xD the-office-meme   Happy Holidays to ya'll folks! the-wolf-of-wallstreet-meme   PS. Enjoy some more memes   feature-vs-user   hide-the-pain-harold-meme   idea-for-qa   peter-parker-meme   meme   dev-estimating-time-vs-pm    

We Bake with CakePHP